
www.manaraa.com

Model predictive control based
on chaos particle swarm

optimization for nonlinear
processes with constraints

Adel Taeib
Department of Electrical Engineering,

High School of Sciences and Engineering of Tunis (ESSTT), Tunis, Tunisia
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Abstract

Purpose – The purpose of this paper is to propose a new type of predictive fuzzy controller.
The desired nonlinear system behavior is described by a set of Takagi-Sugeno (T-S) model. However,
due to the complexity of the real processes, obtaining a high quality control with a short settle time,
a periodical step response and zero steady-state error is often a difficult task. Indeed, conventional
model predictive control (MPC) attempts to minimize a quadratic cost over an extended control
horizon. Then, the MPC is insufficient to adapt to changes in system dynamics which have
characteristics of complex constraints. In addition, it is shown that the clustering algorithm is
sensitive to random initialization and may affect the quality of obtaining predictive fuzzy controller.
In order to overcome these problems, chaos particle swarm optimization (CPSO) is used to perform
model predictive controller for nonlinear process with constraints. The practicality and effectiveness of
the identification and control scheme is demonstrated by simulation results involving simulations
of a continuous stirred-tank reactor.
Design/methodology/approach – A new type of predictive fuzzy controller. The proposed
algorithm based on CPSO is used to perform model predictive controller for nonlinear process with
constraints.
Findings – The results obtained using this the approach were comparable with other modeling
approaches reported in the literature. The proposed control scheme has been show favorable results
either in the absence or in the presence of disturbance compared with the other techniques. It confirms
the usefulness and robustness of the proposed controller.
Originality/value – This paper presents an intelligent model predictive controller MPC based on
CPSO (MPC-CPSO) for T-S fuzzy modeling with constraints.

Keywords Control systems, Optimization techniques, Fuzzy logic, Nonlinear systems

Paper type Research paper

1. Introduction
Various control methods have been utilized in industries, one of them being the model
predictive control (MPC). This latter becomes one of the major control strategies because
of its intuitive control concept. It has many successful applications including chemicals,
food processing, automotive and aerospace applications (Qin and Badgwell, 2003).
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In recent years, several tuning techniques for the MPC have been developed in the
literature. Lino et al. (1993) have proposed a parameter tuning method considering robust
stability based on frequency response analysis. Later, Drogies and De Geest (1999) have
proposed a heuristic tuning method based on expert rules, can be considered as that
reported by Rowe and Maciejowski (2000). Other authors have proposed an MPC with
constraints based on H-infinity loop shaping method. However, these methods have
certain disadvantages. First, they require complicated computing procedures and they
are difficult to use by unskilled ordinary controller designers. Second, they are difficult to
deal with in the case of plants with constraints. Although most of MPC algorithms with
constraints turn to linear matrix inequalities to take care of the constraints (Wan and
Kothare, 2003), they are difficult to be realized due to some matrix calculations, especially
the matrix inverse operation. They also involve a lot of mathematic operations which are
difficult to be understood. That is why some researchers have proposed a new controller
based on a combination with other techniques. Causa et al. (2008) used the genetic
algorithm (GA) to minimize both the trajectory error and the control energy for the
control strategy of the temperature of a batch reactor. But, GA has the disadvantage
of premature, slow convergence rate and needed many parameter settings. Chen and
Jiang (2009) have proposed Takagi-Sugeno (T-S) model fuzzy predictive controller
based on intelligent optimization algorithm (Du Shi et al.). Recently, many studies
have proposed the evolutionary computation technique based on Particle Swarm
Optimization (PSO) (Shin and Park, 1998; Soltani et al., 2012; Soltani and Chaari,
2013). They have been successfully applied to solve various optimization problems.
Indeed, Coelho and Mariani (2009) present a predictive controller based on recursive
linear models, where the optimization problem is solved using the PSO algorithm.
In the same context, the PSO have been applied successfully to optimize the
control law of a multivariable generalized predictive control (Yusuf et al., 2009;
Duwaish and Rizvi, 2010; Zheng, 2010a). While Pourjafari and Mojallali (2011) have
proposed a voltage control scheme based on the MPC to overcome the Voltage
stability problem. Their proposed method utilizes a modified discrete multi-valued
PSO to perform the MPC. However, Hongbing et al. (2009) have been shown that
PSO can be easily trapped in local optima and premature convergence. In order
to overcome this problem, Jianchao and Han (2012) proposed the Gaussian PSO,
but the use of this type of optimization needed more time to calculate the optimal
control variable.

In this paper, a new type of MPC is proposed using Chaos Particle Swarm
Optimization (CPSO). First, for the modelling phase, the T-S fuzzy model is employed
to approximate the nonlinear system. Second, we introduce CPSO into MPC using a
modified performance criterion in order to provide less computational controller’s
expression.

The remainder of this paper is organized as follows. In Section 2, a brief overview of
T-S fuzzy model and weighted recursive least squares method are given. The iterative
distributed MPC is presented in Section 3. The proposed MPC tuning algorithm based
on CPSO is detailed in Section 4. Simulation results and conclusion are given in
Sections 5 and 6, respectively.

2. T-S fuzzy model
We consider a class of nonlinear systems defined by:

yðkþ 1Þ ¼ f ðXðkÞÞ ð1Þ
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with the regressor vector X(k) is:

XðkÞ ¼ yðkÞ; yðk� 1Þ; :::; yðk� nÞ; uðkÞ; uðk� 1Þ; :::; uðk�mÞ½ �

Here, k denotes the discrete time, n and m define the number of delayed output and
input. The unknown function f(X(k)) is approximated by a T-S fuzzy model which is
charities by consequent rules that are linear function of the input variables (Lagrat
et al., 2007). A T-S model consists of a set of fuzzy rules, each describing a local
input-output relation as follows:

Ri : if X1 is Ai
1 and if Xz is Ai

z THEN yiðkÞ ¼ XðkÞ 1½ �:yT
i ð2Þ

where Ri denotes the ith IF-THEN rule, r is the number of rules, Ai
j j ¼ 1; :::; zð Þ

is the fuzzy subset, u(k) is the system input variable, y(k) is the system output,
yi ¼ ai1; ai2; :::aiz; bi0½ � is the parameter vector of the corresponding local linear model.
Let mi(X(k)) is the normalized membership function of the inferred fuzzy set
Ai, where Ai ¼

Qs
j¼1 Ai

j .

The output of T-S fuzzy model is computed:

ŷ ¼
Xr

i¼1

mikyi ð3Þ

The membership values mik have to satisfy the following conditions:

mik 2 0 1½ � i ¼ 1; :::; r ð4Þ

Xr

i¼1

mik ¼ 1 k ¼ 1; :::;N ð5Þ

0o
XN

k¼1

mikoN i ¼ 1; :::; r ð6Þ

The weighted recursive least squares method (WRLS) can be applied to estimate the
consequent parameters for each rule. The WRLS algorithm is described as follows
(Kung and Su, 2007):

yiðkÞ ¼ yiðk� 1Þ þ LiðkÞ yiðkÞ � XðkÞ 1½ �yT
i ðk� 1Þ

h i
ð7Þ

LiðkÞ ¼
Pðk� 1Þ XðkÞ 1½ �T

1=mik þ XðkÞ 1½ �Pðk� 1Þ XðkÞ 1½ �T
ð8Þ

PiðkÞ ¼ Piðk� 1Þ � LiðkÞ XðkÞ 1½ �Piðk� 1Þ ð9Þ

where p(k) is a covariance matrix and L(k) referred to the estimator gain vector.
A common choice of initial value is to take yi(0)¼ 0 and Pi(0)¼ aI, where a is a
large number.
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3. MPC
MPC has been proposed by Richalet et al. (1978). MPC estimates future behavior of
the control target within a certain period using a model of the control target inside the
controller. Then, it determines manipulated signals so that an objective function is
minimized (Qin and Badgwell, 2003; Maciejowski, 2002). MPC utilizes predictive
outputs ŷ , which is estimated within Ny steps (prediction horizon) in the future
using an internal model.

Figure 1 shows the basic strategy of a model-based predictive controller.
The objective function of MPC is defined by:

J ¼ J1 þ J2 ð10Þ

J1 ¼
XNy

j¼1

yrðkþ jÞ � ŷðkþ jÞ½ � ð11Þ

J2 ¼
XNu

i¼1

l Duðkþ 1� iÞ½ �2 ð12Þ

with Duðkþ 1Þ ¼ uðkþ i þ 1Þ � uðkþ iÞ.
Here l is weight coefficient for the future behavior, yr is the future reference trajectory,

ŷðkÞ corresponds to the prediction of the controlled variable, u(k) is the increment of the
future control actions and Duðkþ jÞ is the increment of control variable.

A MPC problem can be formulated as an optimization problem, which determines
input signals uðkÞ; :::; uðkþ Nu � 1Þ½ �with in Nu steps (control horizon) in the future so
that the objective function is minimized considering the following constraints (Shin
and Park, 1998):

uminouðkþ iÞoumax; i ¼ 1; :::;Nu � 1

Nu

Ny

ŷ⏐k

system response without
MPC contol

yr

FuturePast

Δu(k + Nu − 1)⏐k

Δu(k + 2)⏐k

Δu(k + 1)⏐k

k − 1 k + 1k + 2 k + Nu − 1 k + Ny

Δu(k )⏐k

Figure 1.
Basic strategy of a model-
based predictive controller
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DuminoDuðkþ iÞoDumax; i ¼ 1; :::;Nu � 1

umax and umin are the constraints for u. Dumax and Dumin are the constraints for Du.

4. Nonlinear MPC based on CPSO
The quadratic optimization problem defined by Espinosa et al. (1999) must be solved
using a nonlinear optimization method where the optimization variables are given by
the future control actions. The conventional controllers are designed based on the
linearized model, but in many cases, such a model is very difficult to build due to
the presence of strong nonlinear dynamics in the behavior of the system. When the
nonlinearity is strong, such controllers may produce big errors or even be out of
control. Although CPSO is a relatively new technique, it has been used in many fields
of applications related to optimal control of industrial processes (Coelho, 2009).
It offers a high degree of flexibility and robustness in dynamic environments.
Conventional nonlinear optimization methods are not capable of providing a solution in
reasonable time (Shin and Park, 1998). For this reason, we propose the CPSO as an
optimization method.

4.1 PSO
PSO is a stochastic optimization technique based on the social behavior of swarms
off locking animals (Kennedy and Eberhart, 1995). The aim of this algorithm is to
minimize a defined function. We assume that the swarm consists of N p particles, which
is as a point in this D-dimensional search space. Each particle has a position
vector pi ¼ pi1; pi2; :::; pid½ � {\rm \, and\, a\, velocity\, vector} Vi ¼ Vi1;Vi2; :::;Vid½ � .
The particle adjusts the velocity and position according to the best experience called
the pbest, found by itself, and gbest, found by all its neighbors (Chen and Jiang, 2009):

Vidðsþ 1Þ ¼ w VidðsÞ þ r1c1ðpbestidðsÞ � pidðsÞÞ þ r2c2ðgbestgdðsÞ � pidðsÞÞ ð13Þ

pidðsþ 1Þ ¼ pidðsÞ þ Vidðsþ 1Þ ð14Þ

where s is the number of iteration, r1 and r2 are two random numbers in the interval
[0, 1]. c1 and c2 are positive constants. pbest and gbest are the memory of the particle
and w is the inertia weight, it is a parameter used to control the impact of the previous
velocities on the current velocity. It influences the tradeoff between the global and local
exploitation abilities of the particles. w is updated as:

w ¼ wmax

�
wmax � wmin

smax

�
s ð15Þ

where wmin, wmax are minimum, maximum values of w, respectively. The PSO
algorithm uses a swarm consisting of Nu particles each control-increment vector:
Duðkþ jÞ; ðj ¼ 1; :::;Nu � 1Þ to get an optimal solution Duðkþ jÞ� which minimizes
the optimization problem:

Duðkþ jÞ ¼ Du1ðkþ jÞ Du2ðkþ jÞ :::DuNu
ðkþ jÞ½ �;

Dvðkþ jÞ ¼ Dv1ðkþ jÞ Dv2ðkþ jÞ :::DvNu
ðkþ jÞ½ �

where the position of the particle Duðkþ jÞ is update by Equation (14).

1473

CPSO for
nonlinear
processes



www.manaraa.com

4.2 CPSO
Hongbing et al. (2009) have shown that PSO can be easily trapped in local
optimal convergence. In order to overcome this problem, CPSO has been used
by Clerc (1999) as well as Kennedy and Clerc (2002). In CPSO, a constriction factor
w is added in the velocity equation of PSO algorithm. Consequently, the velocity
Equation (13) begins:

Vidðsþ 1Þ ¼ wðVidðsÞ þ r1c1ðpbestidðsÞ � pidÞ þ r2c2ðgbestgdðsÞ � pidÞÞ ð16Þ

where the constriction coefficient w is expressed as:

w ¼ 2

2� ‘�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � 4‘
p��� ��� ð17Þ

with l¼ c1þ c2 and l 44. Usually, l is set to 4.1 (c1¼ c2¼ 2.05), and the constriction
coefficient w is 0.729. Other possible choice for the constriction coefficients is
available. Kennedy and Clerc (2002) found that the system behavior could be
controlled so that the system behavior has the following features:

(1) the system does not diverge in a real value region and finally can converge; and

(2) the system can search for different regions efficiently by avoiding premature
convergence.

4.3 The proposed algorithm
The proposed approach is composed of two phases of learning algorithm. In the first
phase, the FCM is employed to construct the fuzzy model. In the second phase, the
CPSO is used to finally tune predictive control law of the obtained fuzzy model by
minimizing a defined objective function. Figure 2 shows the structure of the proposed
control system (MPC-CPSO).

The proposed predictive control algorithm is summarized as follows:
Phase 1: construction of the fuzzy model using FCM algorithm:
Step 1. Given data S ¼ ðx1; y1Þ; :::; ðxk; ykÞf g k ¼ 1; :::;N , set m41 and the metric

matrix A¼ I. Select a termination threshold e40 and initialize U 0 (e.g. random).
Repeat for l¼ 1,2 ,y

y(k)u(k − �)e(k + i )
yr (k + i )

−+

Constraints

System

Nonlinear
Model

Chaos Particle Swarm
Optimizer

MPC-CPSO
Controller

y(k + i )ˆFigure 2.
Structure of proposed
MPC-CPSO controller
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Step 2. Calculate the cluster centers as follows:

v l
i ¼

PN
k¼1 ðml�1

ik Þ
mxkPN

k¼1 ðml�1
ik Þ

m
i ¼ 1; 2; . . . ; r k ¼ 1; 2; . . . ;N ð18Þ

m is the fuzzy weighting exponent.
Step 3. Calculate distances as follows:

rik ¼ ðxk � v l
i Þ

T A ðxk � vl
iÞ ð19Þ

Step 4. Update U l with rik satisfy:

Ul
ik ¼

m l
ik ¼ 1Pr

j¼1
ðrik
rjk
Þ

2
m�1

if rik40

0 otherwise

(
ð20Þ

Until Ul � Ul�1
�� ��oe then stop. Otherwise, set l¼ lþ 1 and return to Step 2.

Step 5. Calculate values for r model parameters yr
i using WRLS method.

Phase 2: optimization predictive control algorithm:
Step 1. Fix the parameters of the algorithm c1, c2, N p,Nu, Ny, wmin and wmax.

Choose umax,umin,Vmin and Vmax.
Step 2. Calculate the fitness value of each particle according to Equation (10).
Step 3. Updating of each particles velocity and position according to Equations (16)

and (14).
Step 4. Find the individual best pbest for each particle and the global best gbest.
Step 5. Check each parameter of the particle’s position by the corresponding bounds

Vmin and Vmax.
Step 6. Return to Step 2 until a good fitness is met.

5. Simulation results
In this section, we are going to examine the performance of the proposed control
predictive algorithm developed above.

In this paper, the Relative Error (RE), Mean Relative Error (MRE) and Overshoot
Value (OV) are used as the performance indexes, which are defined as:

RE ¼ yðkÞ � yrðkÞj j
yrðkÞ

ð21Þ

MRE ¼
PN

k¼1 REðkÞ
yrðkÞ

ð22Þ

OV ¼ ymax � y1
y1

� 100% ð23Þ

ymax is the maximum value of y(k) , yN is the value when the predicted output arrives
at its steady state.
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5.1 Example 1
We consider the nonlinear system (Song et al., 2007):

yðkÞ ¼ yðk� 1Þyðk� 2Þðyðk� 1Þ þ 2:5Þ
1þ yðk� 1Þ2 þ yðk� 2Þ2

þ uðk� 1Þ ð24Þ

y(k) is the output and u(k) is the input which is uniformly bounded in the region [�2,2].
We choose yðk� 1Þ; yðk� 2Þ; uðk� 1Þ; uðk� 2Þ½ � as input variables, and the number
of fuzzy rules is four. The desired setpoints yr(k) are switched between 0 and
3 every 100 iterations and the initial conditions are set as y(�1)¼ y(�2)¼ 0. The
parameter settings of the proposed method are: Np¼ 20, Nu¼ 5, umax¼ 2, umin¼ 0,
Dumax¼ 0.5, Dumin¼�0.5, wmax¼ 0.9, wmin¼ 0.5 and c1¼ c2¼ 2.05.

The fuzzy rules obtained by the FCM clustering algorithm are:

R1: yðkÞ ¼ 1:05yðk� 1Þ � 0:271yðk� 1Þ þ 0:213uðk� 1Þ þ 0:354uðk� 2Þ þ 1:201

R2: yðkÞ ¼ 0:947yðk� 1Þ � 0:013yðk� 1Þ þ 0:3143uðk� 1Þ þ 0:337uðk� 2Þ þ 0:941

R3: yðkÞ ¼ 1:121yðk� 1Þ � 0:073yðk� 1Þ þ 0:223uðk� 1Þ þ 0:291uðk� 2Þ þ 0:921

R4: yðkÞ ¼ 0:897yðk� 1Þ � 0:093yðk� 1Þ þ 0:178uðk� 1Þ þ 0:199uðk� 2Þ þ 0:798

Table I compares our results with those obtained with different MPC methods such
as MPC (Qin and Badgwell, 2003) and MPC based on PSO (MPC-PSO) (Coelho and
Mariani, 2009). From Table I, we can note that the performance of the MPC based on
CPSO with constraints is better than those of other methods (MPC and MPC-PSO)
in terms of MRE, OV and rise time (RT). Figures 3-5 show the control signal and

Performance MPC MPC-PSO MPC-CPSO

MRE 0.0074 0.0052 0.0011
OV (%) 1.13 0.1567 0.0033
Rise Time 1.3192 1.4311 0.7976

Table I.
MRE, OV and rise time
results

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Sample number

u

Figure 3.
Control signal
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the output responses, respectively, of predictive control under setpoints changes.
As shown in these figures, the proposed control system MPC-CPSO has a good
tracking capability and control performance. Furthermore, the MPC-CPSO design has
a short setting time, small maximum overshoot fast response, reasonable control activity,
and good setpoint tracking ability regarding Figure 4. In the presence of disturbance,
Figure 5 discloses that MPC and MPC-PSO have an unstable tracking performance
and produce a big overshoot. These results clearly indicate that the proposed controller
outperforms the other methods (MPC and MPC-PSO) taking into account the square
responses to reference changes and the disturbance rejection. Consequently, we can note
that our proposed controller always keep the best performance with and without
disturbance. Thus, it confirms the usefulness and robustness of the proposed controller.

5.2 Example 2
The proposed method has been tested also for the control of a Continuous Stirred-Tank
Reactor (CSTR) as shown in Figure 6. The discrete dynamic equations for the CSTR are
(Chen and Peng, 1997):

x1ðkÞ ¼ x1ðk� 1Þ þ Teð�x1ðk� 1Þ þ Dað1� x1ðk� 1ÞÞ exp x2ðk�1Þ
1þx2ðk�1Þ=gÞ

x2ðkÞ ¼ x2ðk� 1Þ þ Teð�ð1� bÞx2ðk� 1Þ þ BDað1� x1ðk� 1ÞÞ exp x2ðk�1Þ
1þx2ðk�1Þ=gÞ þ buðk� 1Þ

yðkÞ ¼ x2ðkÞ

8><
>:

ð25Þ
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Figure 4.
System response of

different methods
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where x1 and x2 represent the dimensionless reaction concentration and reactor
temperature, respectively, and u is the control input representing the dimensionless
cooling jacket temperature. The physical parameters of the CSTR model equations are
Da, g, B and b which correspond to the Damköhler number, the activate energy, the
heat of reaction and the heat transfer coefficient, respectively. Nominal system
parameters are Da¼ 0.072, g¼ 20, B¼ 8, b¼ 0.8 and Ts is the sampling time
(Ts¼ 0.2s). The FCM algorithm gave a fuzzy model that consists of two fuzzy rules in
the following form:

R1: yðkÞ ¼ 0:562yðk� 1Þ þ 0:324yðk� 2Þ � 0:123uðk� 1Þ þ 1:432

R2: yðkÞ ¼ 0:472yðk� 1Þ � 0:007yðk� 2Þ þ 0:109uðk� 1Þ þ 1:002

The responses for the servo essays are given in Figure 6. For the analysis of this
behavior, the reference signal changes as follows:

yr ¼

1 0okp150
2 150okp300
3 300okp450
4 450okp600

8>><
>>: ð26Þ

The simulation results of different methods are given in Table II. The comparisons
results between the control law and the estimated obtained by MPC, MPC-PSO and our

Caf

Tf

A → B

T

Ca Cb

Tc

Source: Chen and Peng (1997)

Figure 6.
CSTR plant

Performance MPC MPC-PSO MPC-CPSO

MRE 0.0026 0.0023 0.0016
OV (%) 1.13 0.0031 00
Rise Time 5.7171 4.6649 4.6345

Table II.
MRE, OV and rise time
results
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method are shown in Figure 7. As it is presented in Table II, the simulation
results demonstrate the superiority of MPC-CPSO method comparing to the other
algorithms. Indeed, the performance index MRE obtained by our method is 0.0016.
In terms of overshoot OV, MPC-CPSO has a lower overshoot by 0.0031 percent
than MPC-PSO algorithm and 1.13 percent than MPC algorithm. In addition,
MPC-CPSO has minimum RT equal to 4.6345. However, Qin and Badgwell
(2003) and Coelho and Mariani (2009) their method are 5.7171 and 4.6649,
respectively. A similar analysis can be seen also in Figure 8. This figure shows
the RE performance of the different methods. On the whole, we note that, our
method retained a good performance with good tracking capability and control
performance.

6. Conclusions
This paper presents an intelligent model predictive controller based on CPSO.
Indeed, the proposed MPC is designed taking into account the constraints. The
application of CPSO improves the performance of the MPC of nonlinear systems
without recourse to use a complicated mathematical calculation. The robustness and
the quality of this modification in the MPC method are demonstrated by simulation
results of two benchmark problems. Through these results, the proposed control
scheme has shown favorable results either in the absence or in the presence of
disturbance compared with the techniques reported in the literature.
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Figure 7.
Servo response
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